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1. INTRODUCTION

In mass production firms such as steel making that have big equipments, sudden stops of production processes 
by machine failure cause severe damages such as shortage of materials to the later processes, delays to the due 
date and the increasing idling time.

To prevent these troubles, machine diagnosis techniques play important roles. So far, Time Based Maintenance 
(TBM) technique has constituted the main stream of the machine maintenance, which makes checks for 
maintenance at previously fixed time. But it has a weak point that it makes checks at scheduled time without 
taking into account whether the parts are still keeping good conditions or not. On the other hand, Condition Based 
Maintenance (CBM) makes maintenance checks by watching the condition of machines. Therefore, if the parts are 
still keeping good condition beyond its expected life, the cost of maintenance may be saved because machines can 
be used longer than planned. Therefore the use of CBM has become dominant. The latter one needs less cost of 
parts, less cost of maintenance and leads to lower failure ratio.

However, it is mandatory to catch a symptom of the failure as soon as possible of a transition from TBM to CBM 
is to be made. Many methods are developed and examined focusing on this subject. In this paper, we propose a 
method for the early detection of the failure on rotating machines which is the most common theme in machine 
failure detection field. 
So far, many signal processing methods for machine diagnosis have been proposed (Bolleter, 1998; Hoffner, 1991). 
As for sensitive parameters, Kurtosis, Bicoherence, Impact Deterioration Factor (ID Factor) were examined 
(Yamazaki, 1977; Maekawa et al.1997; Shao et al.2001; Song et al.1998; Takeyasu, 1989). In this paper we focus our 
attention on the index parameters of vibration.
Kurtosis is one of the sophisticated inspection parameters which calculates normalized 4-th moment of Probability 
Density Function (PDF). In the industry, there are cases where quick reactions are required on watching the 
waveform at the machine site.
In this paper, we consider the case such that impact vibration occurs on the gear when the failure arises. Higher 
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moments would be more sensitive compared with 4-th moment. Kurtosis value is 3.0 under normal condition and 
when failure increases, the value grows big. Therefore, it is a relative index. On the other hand, Bicoherence is an 
absolute index which is close to 1.0 under normal condition and tends to be 0 when failure increases.
In this paper, we deal with the generalized n-th moment. When theoretical value of n-th moment is divided by 
calculated value of n-th moment, it would behave as an absolute index. New index shows that it is 1.0 under 
normal condition and tends to be 0 when failure increases.
In this paper, We introduce a simplified calculation method to this new index and name this as a simplified 
absolute index of n-th moment. Three cases in which the rolling elements number is nine, twelve and sixteen are 
examined and compared.
Trying several n, we search n which shows the most similar effect to the behavior of Bicoherence. This simplified 
method enables us to calculate the new index even on a pocketsize calculator and enable us to install it in 
microcomputer chips. We survey each index of deterioration in section 2. Simplified absolute index of n-th moment 
is proposed in section 3. In section 4, numerical examples are presented which are followed by the remarks of 
section 5. Section 6 is a summary.

2. FACTORS FOR VIBRATION CALCULATION

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration 
becomes bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is 
unsuitable (Yamazaki, 1977). Let the vibration signal be presented by the function of time 

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

. And also assume 
that it is a stationary time series with mean 

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

. Denote the probability density function of these time series as

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

. 
Indices for vibration amplitude are as follows. Here we especially suppose that 

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

= 0 for the simplicity of description.

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

(1)

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

(2)

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

(3)

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

(4)

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. 
Therefore, normalized dimensionless indices are required.

There are four main categories for this purpose.

A. Normalized root mean square value
B. Normalized peak value
C. Normalized moment 
D. Normalized correlation among frequency domain



31

Simplified Machine Diagnosis Techniques Using n-th Moment of Absolute Deterioration Factor

A. Normalized root mean square value
a. Shape Factor : 

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

(5)

(

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

: mean of the absolute value of vibration)

B. Normalized peak value 
b. Crest Factor : 

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

(6)

(

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

: peak value of vibration)

c. Clearance Factor : 

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) (7)

d. Impulse Factor : 

enables us to calculate the new index even on a pocketsize calculator and enable us to install it in microcomputer chips. We 

survey each index of deterioration in section 2. Simplified absolute index of n-th moment is proposed in section 3. In section 4, 

numerical examples are presented which are followed by the remarks of section 5. Section 6 is a summary. 

 

2. FACTORS FOR VIBRATION CALCULATION 

 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration becomes 

bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is unsuitable (Yamazaki, 

1977). Let the vibration signal be presented by the function of time x(t). And also assume that it is a stationary time series with 

mean x . Denote the probability density function of these time series as p(x). Indices for vibration amplitude are as follows. 

Here we especially suppose that x = 0 for the simplicity of description. 

 

These are dimensional indices which are not normalized. They differ by machine sizes or rotation frequencies. Therefore, 

normalized dimensionless indices are required. 

 

There are four main categories for this purpose. 

 

A. Normalized root mean square value 

B. Normalized peak value 

C. Normalized moment  

D. Normalized correlation among frequency domain 

 

A.  Normalized root mean square value 

a. Shape Factor : SF 

(
abs

X : mean of the absolute value of vibration) 

 

B.  Normalized peak value  

b. Crest Factor : CrF 

(
peak

X : peak value of vibration) 

 

c. Clearance Factor : ClF 

 

d. Impulse Factor : IF 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

(8)

e. Impact Deterioration Factor : ID Factor / e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

This is proposed in Maekawa et al. (1997).
e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

(9)

(

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

: vibration amplitude where the curvature of PDF becomes maximum)

C. Normalized moment
f. Skewness : 

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

(10)

g. Kurtosis : 

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

(11)

D. Normalized correlation in the frequency domain
h. Bicoherence

Bicoherence shows the relationship between two frequencies and is expressed as

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

(12)

Here

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

(13)

means Bispectrum and



32

Kazuhiro TAKEYASU

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

T : Basic Frequency Interval

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

(14)

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

(15)

Range of Bicoherence satisfies

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) (16)

When there exists a significant relationship between frequencies

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

 and

e. Impact Deterioration Factor : ID Factor / ID 

This is proposed in Maekawa et al. (1997). 

 

(
c

X : vibration amplitude where the curvature of PDF becomes maximum) 

 

C.  Normalized moment 

f. Skewness : SK 

 

g. Kurtosis : KT 

 

D.  Normalized correlation in the frequency domain 

h. Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as 

Here 

means Bispectrum and 

T : Basic Frequency Interval 

Range of Bicoherence satisfies 

When there exists a significant relationship between frequencies
1
f  and

2
f ,Bicoherence is near 1.Otherwise,the value of 

Bicoherence comes close to 0. 

 

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis is known 

to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis (Maekawa et al.,1997; 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

 

(14) 

 

(15) 

 
(16) 

, Bicoherence is near 1.Otherwise,the 
value of Bicoherence comes close to 0.

These indices are generally used in combination and machine condition is judged totally. Among them, Kurtosis 
is known to be one of the superior indices (Noda, 1987) and numerous researches have been conducted on Kurtosis 
(Maekawa et al.,1997; Shao et al.,2001; Song et al.,1998).

Judging from the experiment we made in the past, we may conclude that Bicoherence is also a sensitive good 
index (Takeyasu, 1987, 1989).

In Maekawa et al.(1997), ID Factor is proposed as a good index. In this paper, focusing on the indices of vibration 
amplitude, we introduce a simplified calculation method for absolute index of n-th moment and show that 
simplified absolute index of n-th moment is a sensitive good index for machine diagnosis.
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Therefore, Eq(22)is stated as



34

Kazuhiro TAKEYASU

Absolute index of n-th moment is described as follows. 

Under the normal condition ,
N

Z (n)→1（Ｎ→∞）, 

 and if failure becomes larger,
N

Z (n)→0. 

 

3.2 Simplified Absolute index of n-th moment 

 
When the number of failures on bearings or gears arise, the peak values arise cyclically. In the early stage of the defect, this 

peak signal usually appears clearly. Generally, defects will injure other bearings or gears by contacting the inner covering surface 

as time passes. 

Assume that we get N amount of data and then newly get L amount of data. Assume that mean, variance and moment are 

same with 1~N data and N+1~N+L data except for the case where a special peak signals arises. 

Let mean ,variance and n-th moment calculated by using 1~N data state as  

 

And as for N+1~N+L,let them state as  

Where 

Therefore, Eq(22)is stated as 

Assume that the peak signal which has S times impact from normal signals arises in each m times samplings. As for determining 

the sampling interval, the sampling theorem which is well known can be used(Tokumaru et al.,1982). But in this paper, we do 

not pay much attention on this point in order to focus on the proposed theme.  

Let lN /

2

σ  and 
lN

M
/

of this case, of N + 1~N + l be lN /

2

σ , lNM / , then we get 

 

(22) 

 

(23) 

          

 

         

 

         

(24) 

        

(25) 

        

(26) (26)

Assume that the peak signal which has S times impact from normal signals arises in each m times samplings. As 
for determining the sampling interval, the sampling theorem which is well known can be used (Tokumaru et al., 
1982). But in this paper, we do not pay much attention on this point in order to focus on the proposed theme. 
Let 

Absolute index of n-th moment is described as follows. 

Under the normal condition ,
N

Z (n)→1（Ｎ→∞）, 

 and if failure becomes larger,
N

Z (n)→0. 

 

3.2 Simplified Absolute index of n-th moment 

 
When the number of failures on bearings or gears arise, the peak values arise cyclically. In the early stage of the defect, this 

peak signal usually appears clearly. Generally, defects will injure other bearings or gears by contacting the inner covering surface 

as time passes. 

Assume that we get N amount of data and then newly get L amount of data. Assume that mean, variance and moment are 

same with 1~N data and N+1~N+L data except for the case where a special peak signals arises. 

Let mean ,variance and n-th moment calculated by using 1~N data state as  

 

And as for N+1~N+L,let them state as  

Where 

Therefore, Eq(22)is stated as 

Assume that the peak signal which has S times impact from normal signals arises in each m times samplings. As for determining 

the sampling interval, the sampling theorem which is well known can be used(Tokumaru et al.,1982). But in this paper, we do 

not pay much attention on this point in order to focus on the proposed theme.  

Let lN /

2

σ  and 
lN

M
/

of this case, of N + 1~N + l be lN /

2

σ , lNM / , then we get 

 

(22) 

 

(23) 

          

 

         

 

         

(24) 

        

(25) 

        

(26) 

 and 

Absolute index of n-th moment is described as follows. 

Under the normal condition ,
N

Z (n)→1（Ｎ→∞）, 

 and if failure becomes larger,
N

Z (n)→0. 

 

3.2 Simplified Absolute index of n-th moment 

 
When the number of failures on bearings or gears arise, the peak values arise cyclically. In the early stage of the defect, this 

peak signal usually appears clearly. Generally, defects will injure other bearings or gears by contacting the inner covering surface 

as time passes. 

Assume that we get N amount of data and then newly get L amount of data. Assume that mean, variance and moment are 

same with 1~N data and N+1~N+L data except for the case where a special peak signals arises. 

Let mean ,variance and n-th moment calculated by using 1~N data state as  

 

And as for N+1~N+L,let them state as  

Where 

Therefore, Eq(22)is stated as 

Assume that the peak signal which has S times impact from normal signals arises in each m times samplings. As for determining 

the sampling interval, the sampling theorem which is well known can be used(Tokumaru et al.,1982). But in this paper, we do 

not pay much attention on this point in order to focus on the proposed theme.  

Let lN /

2

σ  and 
lN

M
/

of this case, of N + 1~N + l be lN /

2

σ , lNM / , then we get 

 

(22) 

 

(23) 

          

 

         

 

         

(24) 

        

(25) 

        

(26) 

of this case, of 

Absolute index of n-th moment is described as follows. 

Under the normal condition ,
N

Z (n)→1（Ｎ→∞）, 

 and if failure becomes larger,
N

Z (n)→0. 

 

3.2 Simplified Absolute index of n-th moment 

 
When the number of failures on bearings or gears arise, the peak values arise cyclically. In the early stage of the defect, this 

peak signal usually appears clearly. Generally, defects will injure other bearings or gears by contacting the inner covering surface 

as time passes. 

Assume that we get N amount of data and then newly get L amount of data. Assume that mean, variance and moment are 

same with 1~N data and N+1~N+L data except for the case where a special peak signals arises. 

Let mean ,variance and n-th moment calculated by using 1~N data state as  

 

And as for N+1~N+L,let them state as  

Where 

Therefore, Eq(22)is stated as 

Assume that the peak signal which has S times impact from normal signals arises in each m times samplings. As for determining 

the sampling interval, the sampling theorem which is well known can be used(Tokumaru et al.,1982). But in this paper, we do 

not pay much attention on this point in order to focus on the proposed theme.  

Let lN /

2

σ  and 
lN

M
/

of this case, of N + 1~N + l be lN /

2

σ , lNM / , then we get 

 

(22) 

 

(23) 

          

 

         

 

         

(24) 

        

(25) 

        

(26) 

 + 1~

Absolute index of n-th moment is described as follows. 

Under the normal condition ,
N

Z (n)→1（Ｎ→∞）, 

 and if failure becomes larger,
N

Z (n)→0. 

 

3.2 Simplified Absolute index of n-th moment 

 
When the number of failures on bearings or gears arise, the peak values arise cyclically. In the early stage of the defect, this 

peak signal usually appears clearly. Generally, defects will injure other bearings or gears by contacting the inner covering surface 

as time passes. 

Assume that we get N amount of data and then newly get L amount of data. Assume that mean, variance and moment are 

same with 1~N data and N+1~N+L data except for the case where a special peak signals arises. 

Let mean ,variance and n-th moment calculated by using 1~N data state as  

 

And as for N+1~N+L,let them state as  

Where 

Therefore, Eq(22)is stated as 

Assume that the peak signal which has S times impact from normal signals arises in each m times samplings. As for determining 

the sampling interval, the sampling theorem which is well known can be used(Tokumaru et al.,1982). But in this paper, we do 

not pay much attention on this point in order to focus on the proposed theme.  

Let lN /

2

σ  and 
lN

M
/

of this case, of N + 1~N + l be lN /

2

σ , lNM / , then we get 

 

(22) 

 

(23) 

          

 

         

 

         

(24) 

        

(25) 

        

(26) 

 + 

Absolute index of n-th moment is described as follows. 

Under the normal condition ,
N

Z (n)→1（Ｎ→∞）, 

 and if failure becomes larger,
N

Z (n)→0. 

 

3.2 Simplified Absolute index of n-th moment 

 
When the number of failures on bearings or gears arise, the peak values arise cyclically. In the early stage of the defect, this 

peak signal usually appears clearly. Generally, defects will injure other bearings or gears by contacting the inner covering surface 

as time passes. 

Assume that we get N amount of data and then newly get L amount of data. Assume that mean, variance and moment are 

same with 1~N data and N+1~N+L data except for the case where a special peak signals arises. 

Let mean ,variance and n-th moment calculated by using 1~N data state as  

 

And as for N+1~N+L,let them state as  

Where 

Therefore, Eq(22)is stated as 

Assume that the peak signal which has S times impact from normal signals arises in each m times samplings. As for determining 

the sampling interval, the sampling theorem which is well known can be used(Tokumaru et al.,1982). But in this paper, we do 

not pay much attention on this point in order to focus on the proposed theme.  

Let lN /

2

σ  and 
lN

M
/

of this case, of N + 1~N + l be lN /

2

σ , lNM / , then we get 

 

(22) 

 

(23) 

          

 

         

 

         

(24) 

        

(25) 

        

(26) 

 be 

Absolute index of n-th moment is described as follows. 

Under the normal condition ,
N

Z (n)→1（Ｎ→∞）, 

 and if failure becomes larger,
N

Z (n)→0. 

 

3.2 Simplified Absolute index of n-th moment 

 
When the number of failures on bearings or gears arise, the peak values arise cyclically. In the early stage of the defect, this 

peak signal usually appears clearly. Generally, defects will injure other bearings or gears by contacting the inner covering surface 

as time passes. 

Assume that we get N amount of data and then newly get L amount of data. Assume that mean, variance and moment are 

same with 1~N data and N+1~N+L data except for the case where a special peak signals arises. 

Let mean ,variance and n-th moment calculated by using 1~N data state as  

 

And as for N+1~N+L,let them state as  

Where 

Therefore, Eq(22)is stated as 

Assume that the peak signal which has S times impact from normal signals arises in each m times samplings. As for determining 

the sampling interval, the sampling theorem which is well known can be used(Tokumaru et al.,1982). But in this paper, we do 

not pay much attention on this point in order to focus on the proposed theme.  

Let lN /

2

σ  and 
lN

M
/

of this case, of N + 1~N + l be lN /

2

σ , lNM / , then we get 

 

(22) 

 

(23) 

          

 

         

 

         

(24) 

        

(25) 

        

(26) 

, 

Absolute index of n-th moment is described as follows. 

Under the normal condition ,
N

Z (n)→1（Ｎ→∞）, 

 and if failure becomes larger,
N

Z (n)→0. 

 

3.2 Simplified Absolute index of n-th moment 

 
When the number of failures on bearings or gears arise, the peak values arise cyclically. In the early stage of the defect, this 

peak signal usually appears clearly. Generally, defects will injure other bearings or gears by contacting the inner covering surface 

as time passes. 

Assume that we get N amount of data and then newly get L amount of data. Assume that mean, variance and moment are 

same with 1~N data and N+1~N+L data except for the case where a special peak signals arises. 

Let mean ,variance and n-th moment calculated by using 1~N data state as  

 

And as for N+1~N+L,let them state as  

Where 

Therefore, Eq(22)is stated as 

Assume that the peak signal which has S times impact from normal signals arises in each m times samplings. As for determining 

the sampling interval, the sampling theorem which is well known can be used(Tokumaru et al.,1982). But in this paper, we do 

not pay much attention on this point in order to focus on the proposed theme.  

Let lN /

2

σ  and 
lN

M
/

of this case, of N + 1~N + l be lN /

2

σ , lNM / , then we get 

 

(22) 

 

(23) 

          

 

         

 

         

(24) 

        

(25) 

        

(26) 

, then we get

 

From these equations, we obtain
lN +Q (n) 

as Ｑ lN +
(n) of the above case 

 

While )(Q
N

n  is Kurtosis when n=4 , 

 

)4(Q
N

=KT 

 

We assume that time series are stationary as is stated before in 2. Therefore, even if sample pass may differ, mean and 

variance are naturally supposed to be the same when the signal is obtained from the same data occurrence point of the same 

machine.  

We consider such case when the impact vibration occurs. Except for the impact vibration, other signals are assumed to be 

stationary and have the same means and variances. Under this assumption, we can derive the simplified calculation method for 

machine diagnosis which is a very practical one. 

From the above equation, we obtain 
lN

KT
+

 in the following way. 

        

 

          

 

             

(27) 

          

 

             

 

             

(28) 

        

 

                

 

                  

(29) 

 

From these equations, we obtain
lN +Q (n) 

as Ｑ lN +
(n) of the above case 

 

While )(Q
N

n  is Kurtosis when n=4 , 

 

)4(Q
N

=KT 

 

We assume that time series are stationary as is stated before in 2. Therefore, even if sample pass may differ, mean and 

variance are naturally supposed to be the same when the signal is obtained from the same data occurrence point of the same 

machine.  

We consider such case when the impact vibration occurs. Except for the impact vibration, other signals are assumed to be 

stationary and have the same means and variances. Under this assumption, we can derive the simplified calculation method for 

machine diagnosis which is a very practical one. 

From the above equation, we obtain 
lN

KT
+

 in the following way. 

        

 

          

 

             

(27) 

          

 

             

 

             

(28) 

        

 

                

 

                  

(29) 

(27)

 

From these equations, we obtain
lN +Q (n) 

as Ｑ lN +
(n) of the above case 

 

While )(Q
N

n  is Kurtosis when n=4 , 

 

)4(Q
N

=KT 

 

We assume that time series are stationary as is stated before in 2. Therefore, even if sample pass may differ, mean and 

variance are naturally supposed to be the same when the signal is obtained from the same data occurrence point of the same 

machine.  

We consider such case when the impact vibration occurs. Except for the impact vibration, other signals are assumed to be 

stationary and have the same means and variances. Under this assumption, we can derive the simplified calculation method for 

machine diagnosis which is a very practical one. 

From the above equation, we obtain 
lN

KT
+

 in the following way. 

        

 

          

 

             

(27) 

          

 

             

 

             

(28) 

        

 

                

 

                  

(29) 

 

From these equations, we obtain
lN +Q (n) 

as Ｑ lN +
(n) of the above case 

 

While )(Q
N

n  is Kurtosis when n=4 , 

 

)4(Q
N

=KT 

 

We assume that time series are stationary as is stated before in 2. Therefore, even if sample pass may differ, mean and 

variance are naturally supposed to be the same when the signal is obtained from the same data occurrence point of the same 

machine.  

We consider such case when the impact vibration occurs. Except for the impact vibration, other signals are assumed to be 

stationary and have the same means and variances. Under this assumption, we can derive the simplified calculation method for 

machine diagnosis which is a very practical one. 

From the above equation, we obtain 
lN

KT
+

 in the following way. 

        

 

          

 

             

(27) 

          

 

             

 

             

(28) 

        

 

                

 

                  

(29) 

(28)

From these equations, we obtain
 

From these equations, we obtain
lN +Q (n) 

as Ｑ lN +
(n) of the above case 

 

While )(Q
N

n  is Kurtosis when n=4 , 

 

)4(Q
N

=KT 

 

We assume that time series are stationary as is stated before in 2. Therefore, even if sample pass may differ, mean and 

variance are naturally supposed to be the same when the signal is obtained from the same data occurrence point of the same 

machine.  

We consider such case when the impact vibration occurs. Except for the impact vibration, other signals are assumed to be 

stationary and have the same means and variances. Under this assumption, we can derive the simplified calculation method for 

machine diagnosis which is a very practical one. 

From the above equation, we obtain 
lN

KT
+

 in the following way. 

        

 

          

 

             

(27) 

          

 

             

 

             

(28) 

        

 

                

 

                  

(29) 

(n)
as 

 

From these equations, we obtain
lN +Q (n) 

as Ｑ lN +
(n) of the above case 

 

While )(Q
N

n  is Kurtosis when n=4 , 

 

)4(Q
N

=KT 

 

We assume that time series are stationary as is stated before in 2. Therefore, even if sample pass may differ, mean and 

variance are naturally supposed to be the same when the signal is obtained from the same data occurrence point of the same 

machine.  

We consider such case when the impact vibration occurs. Except for the impact vibration, other signals are assumed to be 

stationary and have the same means and variances. Under this assumption, we can derive the simplified calculation method for 

machine diagnosis which is a very practical one. 

From the above equation, we obtain 
lN

KT
+

 in the following way. 

        

 

          

 

             

(27) 

          

 

             

 

             

(28) 

        

 

                

 

                  

(29) 

(n) of the above case

 

From these equations, we obtain
lN +Q (n) 

as Ｑ lN +
(n) of the above case 

 

While )(Q
N

n  is Kurtosis when n=4 , 

 

)4(Q
N

=KT 

 

We assume that time series are stationary as is stated before in 2. Therefore, even if sample pass may differ, mean and 

variance are naturally supposed to be the same when the signal is obtained from the same data occurrence point of the same 

machine.  

We consider such case when the impact vibration occurs. Except for the impact vibration, other signals are assumed to be 

stationary and have the same means and variances. Under this assumption, we can derive the simplified calculation method for 

machine diagnosis which is a very practical one. 

From the above equation, we obtain 
lN

KT
+

 in the following way. 

        

 

          

 

             

(27) 

          

 

             

 

             

(28) 

        

 

                

 

                  

(29) 

 

From these equations, we obtain
lN +Q (n) 

as Ｑ lN +
(n) of the above case 

 

While )(Q
N

n  is Kurtosis when n=4 , 

 

)4(Q
N

=KT 

 

We assume that time series are stationary as is stated before in 2. Therefore, even if sample pass may differ, mean and 

variance are naturally supposed to be the same when the signal is obtained from the same data occurrence point of the same 

machine.  

We consider such case when the impact vibration occurs. Except for the impact vibration, other signals are assumed to be 

stationary and have the same means and variances. Under this assumption, we can derive the simplified calculation method for 

machine diagnosis which is a very practical one. 

From the above equation, we obtain 
lN

KT
+

 in the following way. 

        

 

          

 

             

(27) 

          

 

             

 

             

(28) 

        

 

                

 

                  

(29) 
(29)

While 

 

From these equations, we obtain
lN +Q (n) 

as Ｑ lN +
(n) of the above case 

 

While )(Q
N

n  is Kurtosis when n=4 , 

 

)4(Q
N

=KT 

 

We assume that time series are stationary as is stated before in 2. Therefore, even if sample pass may differ, mean and 

variance are naturally supposed to be the same when the signal is obtained from the same data occurrence point of the same 

machine.  

We consider such case when the impact vibration occurs. Except for the impact vibration, other signals are assumed to be 

stationary and have the same means and variances. Under this assumption, we can derive the simplified calculation method for 

machine diagnosis which is a very practical one. 

From the above equation, we obtain 
lN

KT
+

 in the following way. 

        

 

          

 

             

(27) 

          

 

             

 

             

(28) 

        

 

                

 

                  

(29) 

 is Kurtosis when n=4 ,

 

From these equations, we obtain
lN +Q (n) 

as Ｑ lN +
(n) of the above case 

 

While )(Q
N

n  is Kurtosis when n=4 , 

 

)4(Q
N

=KT 

 

We assume that time series are stationary as is stated before in 2. Therefore, even if sample pass may differ, mean and 

variance are naturally supposed to be the same when the signal is obtained from the same data occurrence point of the same 

machine.  

We consider such case when the impact vibration occurs. Except for the impact vibration, other signals are assumed to be 

stationary and have the same means and variances. Under this assumption, we can derive the simplified calculation method for 

machine diagnosis which is a very practical one. 

From the above equation, we obtain 
lN

KT
+

 in the following way. 

        

 

          

 

             

(27) 

          

 

             

 

             

(28) 

        

 

                

 

                  

(29) 

We assume that time series are stationary as is stated before in 2. Therefore, even if sample pass may differ, 
mean and variance are naturally supposed to be the same when the signal is obtained from the same data 
occurrence point of the same machine. 
We consider such case when the impact vibration occurs. Except for the impact vibration, other signals are 
assumed to be stationary and have the same means and variances. Under this assumption, we can derive the 
simplified calculation method for machine diagnosis which is a very practical one.
From the above equation, we obtain 

 

From these equations, we obtain
lN +Q (n) 

as Ｑ lN +
(n) of the above case 

 

While )(Q
N

n  is Kurtosis when n=4 , 

 

)4(Q
N

=KT 

 

We assume that time series are stationary as is stated before in 2. Therefore, even if sample pass may differ, mean and 

variance are naturally supposed to be the same when the signal is obtained from the same data occurrence point of the same 

machine.  

We consider such case when the impact vibration occurs. Except for the impact vibration, other signals are assumed to be 

stationary and have the same means and variances. Under this assumption, we can derive the simplified calculation method for 

machine diagnosis which is a very practical one. 

From the above equation, we obtain 
lN

KT
+

 in the following way. 

        

 

          

 

             

(27) 

          

 

             

 

             

(28) 

        

 

                

 

                  

(29) 

 in the following way.



35

Simplified Machine Diagnosis Techniques Using n-th Moment of Absolute Deterioration Factor

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

(30)

Consequently, we obtain Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

(n) as of Eq(23) asConsequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

(31)

Under the normal condition,

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

(32)

 Therefore, we get

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

(33)

Here we introduce the following number. Each index is compared with the normal index as follows. 

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

(34)

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

 : Index at normal condition

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

 : Index at abnormal condition

In Eq(29), Fa becomes

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

(35)

Correlation between 

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

(n) and Fa is as follows.

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

(36)

4. NUMERICAL EXAMPLES

If the system is under normal condition, we may suppose 

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

 becomes a normal distribution function. 

Under the assumption of 3. , let 

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

＝ 9,12,16, considering the cases 

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

＝ 2,4,6,8 for 3., and setting 

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

, we obtain  

Table 1,3,5 from the calculation of

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

. Next, setting 

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

→ 0, 

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

→

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

, we obtain Table 2,4,6. Here, 

Consequently, we obtain lN +Z (n) as of Eq(23) as 

Under the normal condition, 

 

(32) 

 Therefore, we get 

 

(33) 

Here we introduce the following number. Each index is compared with the normal index as follows.  

 

(34) 

nor
P  : Index at normal condition 

abn
P  : Index at abnormal condition 

 

In Eq(29), Fa becomes 

 

(35) 

Correlation between lNZ + (n) and Fa is as follows. 

 

(36) 

 

4. NUMERICAL EXAMPLES 

 
If the system is under normal condition, we may suppose p(x) becomes a normal distribution function.  

Under the assumption of 3. , let 16,12,9=m , considering the cases 8,6,4,2=S  for 3., and setting 

10

N

l =
, we obtain 

Table 1,3,5 from the calculation of )(nz
lN +

. Next, setting ,0→N  Nl → , we obtain Table 2,4,6. Here, m is the 

number of rolling elements. 

Under this condition ,  Ｑ(n) is as follows theoretically when n=4,6,8 

        

(30) 

       

 

 

           

 

(31) 

lN

KT
+

 is the 
number of rolling elements.
Under this condition ,  Ｑ (n) is as follows theoretically when n=4,6,8



36

Kazuhiro TAKEYASU
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carried out even on a pocketsize calculator and is very practical at the factory of maintenance site. This can be 
installed in microcomputer chips and utilized as the tool for early stage detection of the failure.

6. CONCLUSIONS

We proposed a simplified calculation method for an absolute index of n-th moment and named this as simplified 
absolute index of n-th moment. Three cases in which the rolling elements number was nine, twelve and sixteen 
were examined and compared.  As S grows large, the value decreases rapidly and as n grows large, the value also 
decreases rapidly. As for sensitivity, the case of n=4 was quite similar to Bicoherence, and the proposed one in the 
case of n=6 was much more sensitive. It is suitable for especially early stage failure detection. Compared with the 
results obtained so far, the results of numerical examples of this paper are reasonable. Judging from these results, 
our method is properly considered to be effective especially for early stage failure detection. This calculation 
method is simple enough to be executed even on a pocketsize calculator and is very practical at the factory of 
maintenance site. The effectiveness of this method should be examined in various cases.
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