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ABSTRACT

Focusing that consumers are apt to buy superior brand when they are accustomed or bored to use current brand, 
new analysis method is introduced. Before buying data and after buying data is stated using linear model. When 
above stated events occur, transition matrix becomes upper triangular matrix. In this paper, the equation using 
transition matrix is extended to the fourth order lag and the method is newly re-built. These are confirmed by 
numerical examples. Forecasting model is also introduced. This approach makes it possible to identify brand 
position in the market and it can be utilized for building useful and effective marketing plan. 

Keywords: brand selection, matrix structure, brand position

1. INTRODUCTION

It is often observed that consumers select upper class brand when they buy next time after they are bored to use 
current brand. Suppose that former buying data and current buying data are gathered. Also suppose that upper 
brand is located upper in the variable array. Then transition matrix becomes upper triangular matrix under the 
supposition that former buying variables are set input and current buying variables are set output. If the top 
brand were selected from lower brand skipping intermediate brands, corresponding part in upper triangular 
matrix would be 0. These are verified in numerical examples with simple models.

If transition matrix is identified, s-step forecasting can be executed. Forecasting model is introduced. Unless 
planners for products notice its brand position whether it is upper or lower than other products, matrix structure 
makes it possible to identify those by calculating consumers’ activities for brand selection. Thus, this proposed 
approach makes it effective to execute marketing plan and/or establish new brand. 

Quantitative analysis concerning brand selection has been executed by Yamanaka[5], Takahashi et al.[4]. 
Yamanaka[5] examined purchasing process by Markov Transition Probability with the input of advertising 
expense. Takahashi et al.[4] made analysis by the Brand Selection Probability model using logistics distribution. 
In Takeyasu et al. (2007) [6], matrix structure was analyzed for the case brand selection was executed for upper 
class. That method was extended to the second order and third order lag (Takeyasu et al. (2011)[7][8]). In this 
paper, equation using transition matrix is extended to the fourth order lag and the method is newly re-built. Such 
research is quite a new one.

Hereinafter, matrix structure is clarified for the selection of brand in section 2. Extension of the model to the 
fourth order lag is made in section 3. Forecasting model is introduced in section 4. Numerical calculation is 
executed in section 5. Section 6 is a summary.

2. BRAND SELECTION AND ITS MATRIX STRUCTURE

（１）Upper shift of Brand selection
Now, suppose that 
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２． BRAND SELECTION AND ITS MATRIX STRUCTURE 

（１）Upper shift of Brand selection 

Now, suppose that x  is the most upper class brand, y  is the second upper class brand, and z  is the lowest class brand.  

Consumer’s behavior of selecting brand might be yz → , xy→ , xz →  etc. zx→  might be few. 

Suppose that x  is current buying variable, and 
b
x  is previous buying variable. Shift to x  is executed from 

b
x ,

b
y , or 

b
z . 

Therefore, x  is stated in the following equation. 
ij

a represents transition probability from j -th to i -th brand.  

 is the most upper class brand, 
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ij

a represents transition probability from j -th to i -th brand.  
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A  is an upper triangular matrix. 
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A  is an upper triangular matrix. 

To examine this, generating following data, which are all consisted by the data in which transition is made from lower brand to upper 
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A  is an upper triangular matrix. 
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A  is an upper triangular matrix. 
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A  is an upper triangular matrix. 
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former buying data). We have analyzed them by dividing the data (current buying data, former buying data) and 
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(former buying data before former buying data), and put them to Eq.(5) to apply the model.
But this is a kind of a simplified method to apply to the model. If we have a further time lag model and we can 

utilized the data as it is, the estimation accuracy of parameter would be more accurate and the forecasting would 
be more precise. Therefore we have introduced a new model which has extended Eq.(2) to the fourth order lag 
model. As we have seen before, that method was extended to the third order lag (Takeyasu et al. (2011)[8]). In this 
paper, we expand this scheme to the fourth order lag model as follows.
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Eq.(11) is expressed as follows. 
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This is re-written as : 

(10)
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Eq.(5) to apply the model. 
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This is re-written as : 
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Eq.(5) to apply the model. 
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to the third order lag (Takeyasu et al. (2011)[8]). In this paper, we expand this scheme to the fourth order lag model as follows. 

44332211 −−−−

+++=
ttttt

XAXAXAXAX  (10)

Where 

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎜

⎜

⎝

⎛

=

t

p

t

t

t

x

x

x

M

2

1

X     L2,1=t  

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎜

⎜

⎝

⎛

=

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎜

⎜

⎝

⎛

=

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎜

⎜

⎝

⎛

=

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎜

⎜

⎝

⎛

=

)4()4(

1

)4(

1

)4(

2

)4(

22

)4(

21

)4(

1

)4(

12

)4(

11

4

)3()3(

1

)3(

1

)3(

2

)3(

22

)3(

21

)3(

1

)3(

12

)3(

11

3

)2()2(

1

)2(

1

)2(

2

)2(

22

)2(

21

)2(

1

)2(

12

)2(

11

2

)1()1(

1

)1(

1

)1(

2

)1(

22

)1(

21

)1(

1

)1(

12

)1(

11

1

,,,

,,,

,,,

,

,,,

,,,

,,,

,,,

,,,

,,,

,

,,,

,,,

,,,

pppp

p

p

pppp

p

p

pppp

p

p

pppp

p

p

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

aaa

K

MMM

L

L

K

MMM

L

L

K

MMM

L

L

K

MMM

L

L

AA

AA

 

p

t
RX ∈ ( )L,2,1=t   

pppppppp ××××

∈∈∈∈ RARARARA
4321

,,,    

In order to estimate 
43

,,, AAAA
21

we set the following equation in the same way as before. 

i

t

i

t

i

t

i

t

i

t

i

t

εXAXAXAXAX ++++=
−−−− 44332211

  ( )Ni ,,2,1 L=  (11)

MinJ

N

i

i

t

iT

t
→=∑

=1

εε  (12)

Eq.(11) is expressed as follows. 

( )
i

t

i

t

i

t

i

t

i

t

i

t
ε

X

X

X

X

AAA,AX +

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎜

⎜

⎝

⎛

=

−

−

−

−

4

3

2

1

4321
,,  (13)

( )
4321

ˆ
,

ˆ
,

ˆ
,

ˆ
AAAA  which is an estimated value of ( )

4321
,, AAA,A  is obtained as follows in the same way as Eq.(7). 

( )

( ) ( )

1

4321

1

4

3

2

1

1

4321

4321

,,,,,,

ˆ
,

ˆ
,

ˆ
,

ˆ

−

−−−−

=

−

−

−

−

=

−−−−

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

= ∑∑
iT

t

iT

t

iT

t

iT

t

N

i

i

t

i

t

i

t

i

t

N

i

iT

t

iT

t

iT

t

iT

t

i

t
XXXX

X

X

X

X

XXXXX

AAAA

 (14)

This is re-written as : 

(14)

This is re-written as :



21

BRAND SELECTION AND ITS MATRIX STRUCTURE

( )

1

1

44

1

34

1

24

1

14

1

43

1

33

1

23

1

13

1

42

1

32

1

22

1

12

1

41

1

31

1

21

1

11

1

4

1

3

1

2

1

1

4321

,,,

,,,

,,,

,,,

,,,

ˆ
,

ˆ
,

ˆ
,

ˆ

−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−

=

−

=

−

=

−

⎟
⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎜
⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

×

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=

∑∑∑∑

∑∑∑∑

∑∑∑∑

∑∑∑∑

∑∑∑∑

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

AAAA

 

(15)

We set this as : 

( ) ( )

1

4321

ˆ
,

ˆ
,

ˆ
,

ˆˆ
,

ˆ
,

ˆ
,

ˆ

−

⎟
⎟

⎟

⎟

⎟

⎠

⎞

⎜
⎜

⎜

⎜

⎜

⎝

⎛

=

QPMJ

PNLH

MLKG

JHGF

EDCBAAAA

TTT

TT

T

 (16)

In the data group of upper shift brand, PM,L,J,H,G,,E,D,C,B
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 becomes an upper triangular matrix. While NK,F, and Q  are 

diagonal matrix in any case. This will be made clear in the numerical calculation later. 

 

４． FORECASTING 

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations.  
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５． NUMERICAL EXAMPLE 

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand selection shifts to the same 

class or upper classes. As above referenced, corresponding part of transition matrix must be an upper triangular matrix. Suppose 

following events occur.  

Here, 

Lower to Middle: Shift from lower class brand to middle class brand 

Middle to Upper: Shift from middle class brand to upper class brand 

 

 <
4−t

X  to 
3−t

X > events <
3−t

X  to 
2−t

X > events <
2−t

X  to 
1−t

X > events  <
1−t

X  to 
t

X > events

1. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Lower to Lower 3 

2. Lower to Lower 2 Lower to Lower 2 Lower to Lower 2  Lower to Middle 2 

3. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Middle to Middle 3 

4. Lower to Lower 1 Lower to Lower 1 Lower to Middle 1  Middle to Upper 1 

5. Lower to Lower 2 Lower to Middle 2 Middle to Middle 2  Middle to Middle 2 

(15)

We set this as :

( )

1

1

44

1

34

1

24

1

14

1

43

1

33

1

23

1

13

1

42

1

32

1

22

1

12

1

41

1

31

1

21

1

11

1

4

1

3

1

2

1

1

4321

,,,

,,,

,,,

,,,

,,,

ˆ
,

ˆ
,

ˆ
,

ˆ

−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−−

=

−

=

−

=

−

=

−

⎟
⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎜
⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

×

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=

∑∑∑∑

∑∑∑∑

∑∑∑∑

∑∑∑∑

∑∑∑∑

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

N

i

iT

t

i

t

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

AAAA

 

(15)

We set this as : 

( ) ( )

1

4321

ˆ
,

ˆ
,

ˆ
,

ˆˆ
,

ˆ
,

ˆ
,

ˆ

−

⎟
⎟

⎟

⎟

⎟

⎠

⎞

⎜
⎜

⎜

⎜

⎜

⎝

⎛

=

QPMJ

PNLH

MLKG

JHGF

EDCBAAAA

TTT

TT

T

 (16)

In the data group of upper shift brand, PM,L,J,H,G,,E,D,C,B
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 becomes an upper triangular matrix. While NK,F, and Q  are 

diagonal matrix in any case. This will be made clear in the numerical calculation later. 

 

４． FORECASTING 

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations.  
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５． NUMERICAL EXAMPLE 

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand selection shifts to the same 

class or upper classes. As above referenced, corresponding part of transition matrix must be an upper triangular matrix. Suppose 

following events occur.  

Here, 

Lower to Middle: Shift from lower class brand to middle class brand 

Middle to Upper: Shift from middle class brand to upper class brand 
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In the data group of upper shift brand, PM,L,J,H,G,,E,D,C,B
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 becomes an upper triangular matrix. While NK,F, and Q  are 

diagonal matrix in any case. This will be made clear in the numerical calculation later. 

 

４． FORECASTING 

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations.  
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５． NUMERICAL EXAMPLE 

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand selection shifts to the same 

class or upper classes. As above referenced, corresponding part of transition matrix must be an upper triangular matrix. Suppose 

following events occur.  

Here, 

Lower to Middle: Shift from lower class brand to middle class brand 

Middle to Upper: Shift from middle class brand to upper class brand 
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In the data group of upper shift brand, PM,L,J,H,G,,E,D,C,B
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 becomes an upper triangular matrix. While NK,F, and Q  are 

diagonal matrix in any case. This will be made clear in the numerical calculation later. 

 

４． FORECASTING 

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations.  
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５． NUMERICAL EXAMPLE 

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand selection shifts to the same 

class or upper classes. As above referenced, corresponding part of transition matrix must be an upper triangular matrix. Suppose 

following events occur.  

Here, 

Lower to Middle: Shift from lower class brand to middle class brand 

Middle to Upper: Shift from middle class brand to upper class brand 
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In the data group of upper shift brand, PM,L,J,H,G,,E,D,C,B
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 becomes an upper triangular matrix. While NK,F, and Q  are 

diagonal matrix in any case. This will be made clear in the numerical calculation later. 

 

４． FORECASTING 

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations.  
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５． NUMERICAL EXAMPLE 

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand selection shifts to the same 

class or upper classes. As above referenced, corresponding part of transition matrix must be an upper triangular matrix. Suppose 

following events occur.  

Here, 

Lower to Middle: Shift from lower class brand to middle class brand 

Middle to Upper: Shift from middle class brand to upper class brand 
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X > events <
3−t

X  to 
2−t

X > events <
2−t

X  to 
1−t

X > events  <
1−t

X  to 
t

X > events

1. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Lower to Lower 3 

2. Lower to Lower 2 Lower to Lower 2 Lower to Lower 2  Lower to Middle 2 

3. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Middle to Middle 3 

4. Lower to Lower 1 Lower to Lower 1 Lower to Middle 1  Middle to Upper 1 

5. Lower to Lower 2 Lower to Middle 2 Middle to Middle 2  Middle to Middle 2 

 are diagonal matrix in any case. This will be made clear in the numerical calculation later.

4. FORECASTING

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations. 
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We set this as : 
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In the data group of upper shift brand, PM,L,J,H,G,,E,D,C,B
ˆˆˆˆ

 becomes an upper triangular matrix. While NK,F, and Q  are 

diagonal matrix in any case. This will be made clear in the numerical calculation later. 

 

４． FORECASTING 

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations.  
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５． NUMERICAL EXAMPLE 

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand selection shifts to the same 

class or upper classes. As above referenced, corresponding part of transition matrix must be an upper triangular matrix. Suppose 

following events occur.  

Here, 

Lower to Middle: Shift from lower class brand to middle class brand 

Middle to Upper: Shift from middle class brand to upper class brand 
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3. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Middle to Middle 3 

4. Lower to Lower 1 Lower to Lower 1 Lower to Middle 1  Middle to Upper 1 

5. Lower to Lower 2 Lower to Middle 2 Middle to Middle 2  Middle to Middle 2 
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In the data group of upper shift brand, PM,L,J,H,G,,E,D,C,B
ˆˆˆˆ

 becomes an upper triangular matrix. While NK,F, and Q  are 

diagonal matrix in any case. This will be made clear in the numerical calculation later. 

 

４． FORECASTING 

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations.  
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５． NUMERICAL EXAMPLE 

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand selection shifts to the same 

class or upper classes. As above referenced, corresponding part of transition matrix must be an upper triangular matrix. Suppose 

following events occur.  

Here, 

Lower to Middle: Shift from lower class brand to middle class brand 

Middle to Upper: Shift from middle class brand to upper class brand 
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1. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Lower to Lower 3 

2. Lower to Lower 2 Lower to Lower 2 Lower to Lower 2  Lower to Middle 2 

3. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Middle to Middle 3 

4. Lower to Lower 1 Lower to Lower 1 Lower to Middle 1  Middle to Upper 1 

5. Lower to Lower 2 Lower to Middle 2 Middle to Middle 2  Middle to Middle 2 
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In the data group of upper shift brand, PM,L,J,H,G,,E,D,C,B
ˆˆˆˆ

 becomes an upper triangular matrix. While NK,F, and Q  are 

diagonal matrix in any case. This will be made clear in the numerical calculation later. 

 

４． FORECASTING 

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations.  
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５． NUMERICAL EXAMPLE 

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand selection shifts to the same 

class or upper classes. As above referenced, corresponding part of transition matrix must be an upper triangular matrix. Suppose 

following events occur.  

Here, 

Lower to Middle: Shift from lower class brand to middle class brand 

Middle to Upper: Shift from middle class brand to upper class brand 

 

 <
4−t

X  to 
3−t

X > events <
3−t

X  to 
2−t

X > events <
2−t

X  to 
1−t

X > events  <
1−t

X  to 
t

X > events

1. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Lower to Lower 3 

2. Lower to Lower 2 Lower to Lower 2 Lower to Lower 2  Lower to Middle 2 

3. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Middle to Middle 3 

4. Lower to Lower 1 Lower to Lower 1 Lower to Middle 1  Middle to Upper 1 

5. Lower to Lower 2 Lower to Middle 2 Middle to Middle 2  Middle to Middle 2 

(19)

5. NUMERICAL EXAMPLE

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand 
selection shifts to the same class or upper classes. As above referenced, corresponding part of transition matrix 
must be an upper triangular matrix. Suppose following events occur. 
Here,

Lower to Middle: Shift from lower class brand to middle class brand
Middle to Upper: Shift from middle class brand to upper class brand
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In the data group of upper shift brand, PM,L,J,H,G,,E,D,C,B
ˆˆˆˆ

 becomes an upper triangular matrix. While NK,F, and Q  are 

diagonal matrix in any case. This will be made clear in the numerical calculation later. 

 

４． FORECASTING 

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations.  
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５． NUMERICAL EXAMPLE 

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand selection shifts to the same 

class or upper classes. As above referenced, corresponding part of transition matrix must be an upper triangular matrix. Suppose 

following events occur.  

Here, 

Lower to Middle: Shift from lower class brand to middle class brand 

Middle to Upper: Shift from middle class brand to upper class brand 

 

 <
4−t

X  to 
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X > events <
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X  to 
t

X > events

1. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Lower to Lower 3 

2. Lower to Lower 2 Lower to Lower 2 Lower to Lower 2  Lower to Middle 2 

3. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Middle to Middle 3 

4. Lower to Lower 1 Lower to Lower 1 Lower to Middle 1  Middle to Upper 1 

5. Lower to Lower 2 Lower to Middle 2 Middle to Middle 2  Middle to Middle 2 
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In the data group of upper shift brand, PM,L,J,H,G,,E,D,C,B
ˆˆˆˆ

 becomes an upper triangular matrix. While NK,F, and Q  are 

diagonal matrix in any case. This will be made clear in the numerical calculation later. 

 

４． FORECASTING 

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations.  
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５． NUMERICAL EXAMPLE 

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand selection shifts to the same 

class or upper classes. As above referenced, corresponding part of transition matrix must be an upper triangular matrix. Suppose 

following events occur.  

Here, 

Lower to Middle: Shift from lower class brand to middle class brand 

Middle to Upper: Shift from middle class brand to upper class brand 
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In the data group of upper shift brand, PM,L,J,H,G,,E,D,C,B
ˆˆˆˆ

 becomes an upper triangular matrix. While NK,F, and Q  are 

diagonal matrix in any case. This will be made clear in the numerical calculation later. 

 

４． FORECASTING 

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations.  
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５． NUMERICAL EXAMPLE 

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand selection shifts to the same 

class or upper classes. As above referenced, corresponding part of transition matrix must be an upper triangular matrix. Suppose 

following events occur.  

Here, 

Lower to Middle: Shift from lower class brand to middle class brand 

Middle to Upper: Shift from middle class brand to upper class brand 
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In the data group of upper shift brand, PM,L,J,H,G,,E,D,C,B
ˆˆˆˆ

 becomes an upper triangular matrix. While NK,F, and Q  are 

diagonal matrix in any case. This will be made clear in the numerical calculation later. 

 

４． FORECASTING 

After transition matrix is estimated, we can make forecasting. We show some of them in the following equations.  
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５． NUMERICAL EXAMPLE 

In this section, we consider the case there is no shift to lower class brand. We consider the case that brand selection shifts to the same 

class or upper classes. As above referenced, corresponding part of transition matrix must be an upper triangular matrix. Suppose 

following events occur.  

Here, 

Lower to Middle: Shift from lower class brand to middle class brand 

Middle to Upper: Shift from middle class brand to upper class brand 

 

 <
4−t

X  to 
3−t

X > events <
3−t

X  to 
2−t

X > events <
2−t

X  to 
1−t

X > events  <
1−t

X  to 
t

X > events

1. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Lower to Lower 3 

2. Lower to Lower 2 Lower to Lower 2 Lower to Lower 2  Lower to Middle 2 

3. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3  Middle to Middle 3 

4. Lower to Lower 1 Lower to Lower 1 Lower to Middle 1  Middle to Upper 1 

5. Lower to Lower 2 Lower to Middle 2 Middle to Middle 2  Middle to Middle 2 

events
1. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3 Lower to Lower 3

2. Lower to Lower 2 Lower to Lower 2 Lower to Lower 2 Lower to Middle 2

3. Lower to Lower 3 Lower to Lower 3 Lower to Lower 3 Middle to Middle 3

4. Lower to Lower 1 Lower to Lower 1 Lower to Middle 1 Middle to Upper 1

5. Lower to Lower 2 Lower to Middle 2 Middle to Middle 2 Middle to Middle 2
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6. Lower to Lower 1 Lower to Middle 1 Middle to Middle 1 Middle to Upper 1

7. Lower to Lower 2 Lower to Middle 2 Middle to Upper 2 Upper to Upper 2

8. Lower to Lower 3 Lower to Upper 3 Upper to Upper 3 Upper to Upper 3

9. Lower to Middle 2 Middle to Middle 2 Middle to Middle 2 Middle to Middle 2

10. Lower to Middle 4 Middle to Middle 4 Middle to Upper 4 Upper to Upper 4

11. Lower to Middle 2 Middle to Upper 2 Upper to Upper 2 Upper to Upper 2

12. Lower to Upper 1 Upper to Upper 1 Upper to Upper 1 Upper to Upper 1

13. Middle to Middle 2 Middle to Middle 2 Middle to Middle 2 Middle to Middle 2

14. Middle to Middle 2 Middle to Middle 2 Middle to Middle 2 Middle to Upper 2

15. Middle to Middle 1 Middle to Middle 1 Middle to Upper 1 Upper to Upper 1

16. Middle to Middle 2 Middle to Upper 2 Upper to Upper 2 Upper to Upper 2

17. Middle to Upper 3 Upper to Upper 3 Upper to Upper 3 Upper to Upper 3

18. Upper to Upper 1 Upper to Upper 1 Upper to Upper 1 Upper to Upper 1

19. - Lower to Lower 3 Lower to Lower 3 Lower to Lower 3

20. - Lower to Lower 2 Lower to Middle 2 Middle to Middle 2

21. - Lower to Lower 2 Lower to Upper 2 Upper to Upper 2

22. - Lower to Lower 3 Lower to Middle 3 Middle to Upper 3

23. - Lower to Middle 4 Middle to Middle 4 Middle to Middle 4

24. - Lower to Middle 5 Middle to Upper 5 Upper to Upper 5

25. - Lower to Upper 1 Upper to Upper 1 Upper to Upper 1

26. - Middle to Middle 4 Middle to Middle 4 Middle to Middle 4

27. - Middle to Middle 5 Middle to Upper 5 Upper to Upper 5

28. - Middle to Upper 3 Upper to Upper 3 Upper to Upper 3

29. - Upper to Upper 1 Upper to Upper 1 Upper to Upper 1

30. - - Lower to Lower 4 Lower to Lower 4

31. - - Lower to Lower 3 Lower to Middle 3

32. - - Lower to Middle 4 Middle to Middle 4

33. - - Lower to Middle 5 Middle to Upper 5

34. - - Lower to Upper 1 Upper to Upper 1

35. - - Middle to Middle 3 Middle to Middle 3

36. - - Middle to Middle 2 Middle to Upper 2

37. - - Middle to Upper 2 Upper to Upper 2

38. - - Upper to Upper 1 Upper to Upper 1

39. - - - Lower to Lower 2

40. - - - Lower to Middle 3

41. - - - Lower to Upper 3

42. - - - Middle to Middle 2

43. - - - Middle to Upper 1

44. - - - Upper to Upper 1

Vector 

6. Lower to Lower 1 Lower to Middle 1 Middle to Middle 1  Middle to Upper 1 

7. Lower to Lower 2 Lower to Middle 2 Middle to Upper 2  Upper to Upper 2 

8. Lower to Lower 3 Lower to Upper 3 Upper to Upper 3  Upper to Upper 3 

9. Lower to Middle 2 Middle to Middle 2 Middle to Middle 2  Middle to Middle 2 

10. Lower to Middle 4 Middle to Middle 4 Middle to Upper 4  Upper to Upper 4 

11. Lower to Middle 2 Middle to Upper 2 Upper to Upper 2  Upper to Upper 2 

12. Lower to Upper 1 Upper to Upper 1 Upper to Upper 1  Upper to Upper 1 

13. Middle to Middle 2 Middle to Middle 2 Middle to Middle 2  Middle to Middle 2 

14. Middle to Middle 2 Middle to Middle 2 Middle to Middle 2  Middle to Upper 2 

15. Middle to Middle 1 Middle to Middle 1 Middle to Upper 1  Upper to Upper 1 

16. Middle to Middle 2 Middle to Upper 2 Upper to Upper 2  Upper to Upper 2 

17. Middle to Upper 3 Upper to Upper 3 Upper to Upper 3  Upper to Upper 3 

18. Upper to Upper 1 Upper to Upper 1 Upper to Upper 1  Upper to Upper 1 

19. -  Lower to Lower 3 Lower to Lower 3  Lower to Lower 3 

20. -  Lower to Lower 2 Lower to Middle 2  Middle to Middle 2 

21. -  Lower to Lower 2 Lower to Upper 2  Upper to Upper 2 

22. -  Lower to Lower 3 Lower to Middle 3  Middle to Upper 3 

23. -  Lower to Middle 4 Middle to Middle 4  Middle to Middle 4 

24. -  Lower to Middle 5 Middle to Upper 5  Upper to Upper 5 

25. -  Lower to Upper 1 Upper to Upper 1  Upper to Upper 1 

26. -  Middle to Middle 4 Middle to Middle 4  Middle to Middle 4 

27. -  Middle to Middle 5 Middle to Upper 5  Upper to Upper 5 

28. -  Middle to Upper 3 Upper to Upper 3  Upper to Upper 3 

29. -  Upper to Upper 1 Upper to Upper 1  Upper to Upper 1 

30. -  -  Lower to Lower 4  Lower to Lower 4 

31. -  -  Lower to Lower 3  Lower to Middle 3 

32. -  -  Lower to Middle 4  Middle to Middle 4 

33. -  -  Lower to Middle 5  Middle to Upper 5 

34. -  -  Lower to Upper 1  Upper to Upper 1 

35. -  -  Middle to Middle 3  Middle to Middle 3 

36. -  -  Middle to Middle 2  Middle to Upper 2 

37. -  -  Middle to Upper 2  Upper to Upper 2 

38. -  -  Upper to Upper 1  Upper to Upper 1 

39. -  -  -   Lower to Lower 2 

40. -  -  -   Lower to Middle 3 

41. -  -  -   Lower to Upper 3 

42. -  -  -   Middle to Middle 2 

43. -  -  -   Middle to Upper 1 

44. -  -  -   Upper to Upper 1 

Vector 
4321
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−−−− ttttt

XXXXX  in these cases are expressed as follows.  in these cases are expressed as follows.
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BRAND SELECTION AND ITS MATRIX STRUCTURE
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Substituting these to Eq.(14), we obtain the following equation.
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As we have seen before, we can confirm that  

PM,L,J,H,G,,E,D,C,B
ˆˆˆˆ

 parts in Eq.(16) are an upper triangular matrices and 

QNKF ,,,  parts in Eq.(16) are diagonal matrices. 

TTTTTT

PMLJHG ,,,,,  parts are thereby lower triangular matrices. 

We can find that if PMLJHG ,,,,,  parts become upper triangular matrices, then the items compose upper shift or the same level 

shift.  

Calculation results of ( )
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ˆ
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ˆ
,

ˆ
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ˆ
AAAA  become as follows. 
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６． CONCLUSION 

  Consumers often buy higher grade brand products as they are accustomed or bored to use current brand products they have. 

  Formerly we have presented the paper and matrix structure was clarified when brand selection was executed toward higher grade 

brand. In Takeyasu et al. (2007) [6], matrix structure was analyzed for the case brand selection was executed for upper class. In this 

paper, equation using transition matrix was extended to the fourth order lag and the method was newly re-built. In the numerical 

example, matrix structure’s hypothesis was verified. We can utilize the data as it is for the data in which time lag exist by this new 

model and estimation accuracy of parameter becomes more accurate and forecasting becomes more precise. Such research as 

questionnaire investigation of consumers’ activity in automobile purchasing should be executed in the near future to verify obtained 
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order lag and the method was newly re-built. In the numerical example, matrix structure’s hypothesis was 
verified. We can utilize the data as it is for the data in which time lag exist by this new model and estimation 
accuracy of parameter becomes more accurate and forecasting becomes more precise. Such research as 
questionnaire investigation of consumers’ activity in automobile purchasing should be executed in the near future 
to verify obtained results.
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